Non-mRNA 3' end formation: how the other half lives.
نویسندگان
چکیده
The release of nascent RNA from transcribing RNA polymerase complexes is required for all further functions carried out by RNA molecules. The elements and processing machinery involved in 3' end formation therefore represent key determinants in the biogenesis and accumulation of cellular RNA. While these factors have been well-characterized for messenger RNA, recent work has elucidated analogous pathways for the 3' end formation of other important cellular RNA. Here, we discuss four specific cases of non-mRNA 3' end formation-metazoan small nuclear RNA, Saccharomyces cerevisiae small nuclear RNA, Schizosaccharomyces pombe telomerase RNA, and the mammalian MALAT1 large noncoding RNA-as models of alternative mechanisms to generate RNA 3' ends. Comparison of these disparate processing pathways reveals an emerging theme of evolutionary ingenuity. In some instances, evidence for the creation of a dedicated processing complex exists; while in others, components are utilized from the existing RNA processing machinery and modified to custom fit the unique needs of the RNA substrate. Regardless of the details of how non-mRNA 3' ends are formed, the lengths to which biological systems will go to release nascent transcripts from their DNA templates are fundamental for cell survival.
منابع مشابه
Secondary structures involving the poly(A) tail and other
In Saccharomyces cerevisiae, previous measurements of mRNA stabilities have been determined on a per-gene basis. We and others have recently shown that yeast genes give rise to a highly heterogeneous population of mRNAs thanks to extensive alternative 3' end formation. Typical genes can have fifty or more distinct mRNA isoforms with 3' endpoints differing by as little as one and as many as hund...
متن کاملSecondary structures involving the poly(A) tail and other 3’ sequences are major determinants of mRNA isoform stability in yeast
In Saccharomyces cerevisiae, previous measurements of mRNA stabilities have been determined on a pergene basis. We and others have recently shown that yeast genes give rise to a highly heterogeneous population of mRNAs due to extensive alternative 3’ end formation. Typical genes can have fifty or more distinct mRNA isoforms with 3’ endpoints differing by as little as one and as many as hundreds...
متن کاملThe functional half-life of an mRNA depends on the ribosome spacing in an early coding region.
Bacterial mRNAs are translated by closely spaced ribosomes and degraded from the 5'-end, with half-lives of around 2 min at 37 °C in most cases. Ribosome-free or "naked" mRNA is known to be readily degraded, but the initial event that inactivates the mRNA functionally has not been fully described. Here, we characterize a determinant of the functional stability of an mRNA, which is located in th...
متن کاملDifferential degradation of the Escherichia coli polynudeotide phosphoryiase raRNA
The transcript covering pnp, the gene encoding polynudeotide phosphoryiase, is processed by RNaselll at the 5'-upstream site of the pnp gene. In the RNaselll-deficient strain, three species of the unprocessed transcript with different lengths could be detected. In this study, the stability of each transcript was analyzed by SI nuclease protection assay. The results show that the half-lives of t...
متن کاملGlobal Analysis of mRNA Isoform Half-Lives Reveals Stabilizing and Destabilizing Elements in Yeast
We measured half-lives of 21,248 mRNA 3' isoforms in yeast by rapidly depleting RNA polymerase II from the nucleus and performing direct RNA sequencing throughout the decay process. Interestingly, half-lives of mRNA isoforms from the same gene, including nearly identical isoforms, often vary widely. Based on clusters of isoforms with different half-lives, we identify hundreds of sequences confe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Wiley interdisciplinary reviews. RNA
دوره 4 5 شماره
صفحات -
تاریخ انتشار 2013